
RD-Ai93 673 PARALLEL REAL-TIME EXPERT SYSTEMSMU OHIO STATE UNIV 1/1
COLUMBUS B1 CHANDRASEKRAN ET AL. 20 FEB 86

...... A FOSR-TR-8B-SSSB OFOSR-97-S676

UNCLRS5IFXED F/G 12/6 ML

El.'.'.

lgL

1I1I251111 .

MICROCOPY RESOLUTION TEST CHAin
*JRfA .TANnAROS 963-£

llj ljllIII0

WII
REPORT DOCUMENTATION PAGE

AS NPORT SQCURIfV CLNWICAION II& RCSTRIClIVEI MARKIN4GS
() Unclassified ________________________

SECUITYCL.MPI~riO AUWOR TV3. OISYRI @UlIOft1AVAI LASILIY op REPORT

SEURTYCLISPCTUAL hRT Anpro',ed for Public reletale,CD , 0ECI.ASPICATIOhi0010GRAOCt4G SCGOCULE iti:i2 rSe
L PGRPORAM101 ORGANIZATION REPORT NUMUII S. MONITORING~ ORGANIZATION REORT NP411S)S

SONAM OP04POPAII4 OGAIZAION IL PPCIISVMO%.7&NAME OP MONITORING ORGANIZATION

Ohio State University AFOSR
10. &OORESS ICIIV. SM. md ZIP Code# 71. A0G14428 scltp.. m avs ZIP c~sD

~r Columbus Ohio 43212-1194 BLDG #410
Boiling APB, DC 20332-6448

AL NAMIN OP PUINJOgf4@RNG a.OPPICI sytdSOI. 96 PROCUREMENT INSTRUMENT IOENtTIP4CATIONt NumeER

AFOSRNM AOSR-87-004
OL ADDRESS 101Yi. Stat Md ZIP Code) 10. SOURCE OP SUNOING fOes.

PROGRAM PROjecT TASE WORK uNtIrBLDG #410 ElEMENT NO. NOI. 0006N
.. Boiling APB, DC 20332-6448 61102F 2304

1Z. PERPSONAL AurmQRIsI

Chandrasekaran
13IN FYP OP 7EPOR 1OTSOEP4ORT (Yr.. M&.. DOW)- IS. PAGE COurer

Is. SUPP".ME?4TAJIV NOTATION .43/88/ Ie i-b,,ie* 41

1.COSATI cools Is Sk~itCT TsRM CAm R Gaici l 00 Pver it Roettl enW 149Ctbybe" nuber

111tLo GROUP srp

1S. A40TRACT (Caaaaag. an muwnm if necesagr ORO -a*"flit v ovl4mumberp,~~t

This report summarizes work done under a grant issued through the University

Research Instrumentation Program. The grant was issued to support the purchase of

parallel processing equipment to conduct experimental research in high-speed real-

time decision making by parallelism. The facilities were used ro understand the

software requirements of real-time systems, such a&-complex robotics systems.

00 FOM 147.63 ft, :

60uUV TS ... --

20 OSRIUIOIVALSIiv pAil21ASTAT Im JT

Accession For

N-TIS 6RA&J
DTIC TAB

Unannounced
Progress Report on AFOSR Grant 87-0076 usioao o..e.J ustifiatiton

University Research Instrumentation Program By
Distribut i on/

Parallel Real-Time Expert Systems Availability Codes
Dist Special

February 20, 1988

B. Chandrasekaran, PI, and Karsten Schwan, Co-PI

1. Introduction AFOSR.r- 88-0558
The purpose of this grant was to acquire parallel processing hardware to conduct experimental

research in high-speed, real-time decision-making by parallelism, in particular as motivated by problems
in Al and robotics. As a result of on-going expansion of such facilities in the Department of Computer and
Information Science, we were able to pool the grant resources and other resources so as to acquire a /oto
variety of parallel processing hardware for comparative research. The AFOSR funds paid for part of a
BBN Butterfly computer facility, while other resources paid for the acquisition of an Intel Hypercube.

2. Configuration of the BBN Butterfly
Due to the negotiations with BBN for substantially discounted prices, the need for coordination of other

parallel processing hardware, and the University purchasing regulations, the hardware was delivered only
in late 1987. Additional expansion of the configuration is being planned.

Current Configuration. The system that is currently installed includes the following: The Butterfly
currently has 6 68020 nodes with 1Mbyte of memory each and it runs BBN's Chrysalis operating system.
The Butterfly C cross compiler and the Fortran compiler are installed on then front end Sun workstation.
The Uniform System libraries (native and Sun) are installed on the suns.

February/March Upgrade. The following are the scheduled upgrades for February or March of 1988:
Four additional nodes will be installed, and all nodes will be increased to 4 Mbytes of memory. Scheme A
Scheme compiler will be installed. And all nodes will be upgraded to Butterfly Plus nodes when they are
available.

May/June Upgrade. The last phase of the upgrades will transform the Butterfly Plus into a Butterfly
GP1000. This phase will include the following: Disk A disk controller and 500 Mbyte disk will be installed
as will a Tape A tape drive. The GP1000 will run a version of CMU's Mach operating system. Common
Usp Common Usp will be installed.

As mentioned earlier, the AFOSR funds would have paid for a part of the above configuration with
substantial cost-sharing by the University.

I
~85 16 122

3. Research Progress and Plans
The initial research using the Butterfly was undertaken in the area of operating systems for parallel

processing for robotics. The Al research that is being planned, viz., the development of the Generic Task
toolset in commonlisp to run on the Butterfly has begun, but no Butterfly implementations have started

yet.

Thus a large part of this report will deal with the progress in the research on parallel operating systems

for robotics.

3.1. Use of the Butterfly Multiprocessor for Real-Time Robotics
Investigator: Karsten Schwan and associates. During the last few years, we have made significant

progress in understanding the software requirements of real-time systems, such as the complex, robot
vehicle developed with DARPA funds at the Ohio State University, the ASV robot. Specifically, after
having designed and implemented the operating system for the ASV robot's embedded multiprocessor,
we developed a follow-up operating system (termed CHAOS) now running on our laboratory replica of the
embedded multiprocessor. Since it is apparent that functionality like that offered by CHAOS is necessary

for real-time systems1 , two graduate students are now porting CHAOS to the BBN Butterfly
multiprocessor, on the base of the Butterfly's current Chrysalis operating system. This port is roughly

30% complete, and should provide us with a rich, experimental base for the development of real-time and
robotic applications. Its dependencies on Chrysalis are minimal, thereby making it easy for us to repeat
the CHAOS port to the Mach operating system now being developed for the Butterfly by BBN.

The CHAOS basis for real-time program execution should be of use to other groups at OSU, as well.
For example, researchers in Electrical Engineering (David Orin) are now cooperating with researchers in
Computer and Information Science (P. Sadayappan) to evaluate their ideas regarding the construction of
high-performance robotics applications. In addition, since CHAOS is object-based, we are planning to use
CHAOS to understand the performance issues in runtime system support for executable, distributed and
parallel Ada programs (a proposal to ONR's Real-Time Systems Initiative is now being prepared by us).

3.1.1. The CHAOS Multiprocessor Operating/Runtime System Kernel
The CHAOS (Concurrent Hierarchical Adaptable Object System) was designed and implemented in

response to our need for a better methodology of structuring complex, real-time operating software, and
also to facilitate the static and dynamic adaptation of such software. CHAOS has been developed in the
PArallel Real-Time Systems (PARTS) Laboratory at the Ohio State University. This facility provides a
testbed for hierarchical, parallel, real-time software that is a replica and extension of the computer
hardware embedded in current, complex, robot vehicles, such as the ASV and ALV vehicles, the first of
which was developed with DARPA funding at The Ohio State University.

CHAOS offers primitives that allow high-performance, large-scale, real-time software to be
programmed as a system of interacting objects. Its uses the following three principles of software
development:

'The company (AMT Corporation) carrying out much of the follow-up research for the ASV project and also bidding on the next
generation prototype of the ASV is now developing a version of CHAOS that may execute on inhomogeneous, embedded
machines, ike those consisting of general-purpose processors as well as Lisp machines for high-level planning or vector machines
for the procsng of vision input. IF

2

1. Minimal "hardwlred" runtime functionality;

2. Customizatlon by allowing programmers to select among alternative primitives, to tailor
primitives by parameterzation, and even to synthesize customized primitives exhibiting the
precise, desired functionality and performance.

Furthermore, CHAOS demonstrates that the object model of software can be specialized and
implemented efficiently so that it may be used in the real-time domain. The following specializations and
implementation attributes exist:

* Objects of different weights may be created, ranging from light-weight, passive objects that
have no internal processes to heavy-weight objects that may have multiple internal
processes. Therefore, an object may exhibit internal parallelism.

CHAOS objects interact by means of invocations. In order to implement efficient object
interactions, multiple CHAOS primitives exist for the invocation of an object's operations.
These primitives differ in their semantics, performance, lifetimes, and reliabilities; and their
diversity emphasizes the fact that existing implementations of objects or of RPC semantics
for computer networks cannot be trivially applied to the real-time domain. The current
CHAOS invocation primitives range from (a) ObjFastinvoke / fast control invocations that
may be used to toggle actions through (b) Objinvoke / invocations that entail the transfer of
control and parameter-passing (much like RPC implementations) to (c) ObjStreamlnvoke /
streaming invocations with low incremental cost of data transfer (similar to streaming sockets
in Berkeley 4.2 UnixTM). In addition, alternative implementations may be selected based on
(a) whether or not the invoker intends to block on the status of the invocation (synchronous
vs. asynchronous invocations) and on (b) whether or not all resources acquired for the
invocation (eg. parameter blocks) must explicitly be released after each invocation or
whether the cost of releasing resources can be amortized over several invocations
(persistent invocations). Since invocations may consume memory resources, CHAOS also
provides primitives for memory management and garbage collection.

* Explicit scheduling parameters and real-time constraints can be attached to object
invocations, and the queueing policy for invocations in the target object can be controlled and
changed, as well.

3.1.2. The ARTS Extension of CHAOS
Another important issue in real-time systems being addressed by a Ph.D. thesis in Computer and

Information Science is the guarantee of timeliness in the execution of multiple, interacting processes
performing a single task. CHAOS-ARTS (Atomic Real-time Transactions Support) is an extension of
CHAOS being developed on the BBN Butterfly that supports nested atomic transactions, able to
guarantee the timely completion of multiple, possibly parallel actions and providing mechanisms to
programmers to recovery from timing errors.

Roughly 40% of a first prototype of ARTS has been implemented to date. This initial version of ARTS
supports only 'active', 'heavy-weight' objects, which may have internal parallelism (multiple execution
threads). Such objects can be either atomic or non-atomic. Invoking an atomic object starts a new
transaction. The new transaction can either be nested in the invoker's hierarchy or can start a new one.
An invocation can either commit (succeed) or abort (fail). Concurrency atomicity is implemented using
two-phase-locking. Locks are local to objects and can only be obtained by invocations. Failure atomicity is
supported by both backward recovery (undoing state changes) and forward recovery (compensating
operations).

The ARTS design recognizes the special nature of real-time software. Timing constraints are part of

NJUL1

3

the invocation/transaction mechanism. Both deadlines and delays can be specified for an invocation.
Deadlines propagate down the transaction tree. They can be either soft or hard. Soft deadlnes are used
for schedulng purposes.

In ARTS, the synchronization/timing/event mechanisms are integrated with the transaction mechanism;
external events, for example, can automatically start/abort invocations. Periodic activities can be specified
by connecting a timer to an invocation.

The contradiction between two phase locking and responsiveness is relaxed by defining revocable and
interruptible locks. Revoking a lock aborts any invocation(s) with that lock while interrupting a lock simply
delays the invocation(s).

Forward recovery is intended for embedded applications in which the external environment represents
an integral part of the system's state.

The 'relatively' high overhead introduced by the transaction mechanism is compensated by selective
pre-scheduling. Here, we make use of the 'slack times' inherent in any real-time application by performing
'most' of the transaction management while other activities are delayed.

3.2. The Generic Task Toolset
Investigators: B. Chandrasekaran, J. Josephson, T. Bylander and associates. The Al project will in the

initial stages mainly concentrate on the development of a high-level toolset, called the Generic Task
Toolset, for the construction of knowledge-based systems. The ideas have been outlined in earlier
reports to AFOSR for our grant AFOSR 87-0090 and have been published in the technical literature2. We
have enclosed as an appendix a recent paper that sets out the Toolset concept in some detail. Before we
this toolset is implemented on the Butterfly, we need to implement the toolset in Commonlisp first. We
are in the process of acquiring a Symbolics lisp machine as front-end to make this process easier.
Currently the Commonlisp implementation is coming along well, with support from our DARPA project and
from IBM and DEC. We expect to move to the Butterfly stage of the project next year.

3.3. Other Research
As the hardware gets stabilized a number of other projects will get started, some part of the original

proposed research and others new projects that will thrive in the new environment. An example of the
latter is the newly initiated project on computer graphics, implementing parallel scanline display
algorithms.

2For exaln4e, B. Chandrackaran, "Genefic 'i as in Knowledge-Based Reasoning: High-Level BWlding Blocks for Expot
System Oeeign," IEEE Expert. 1(3). pp. 23-30

6

w w w w W

A

